The 8th Joint NASA/FAA/DOD Conference on Aging Aircraft

Decision Algorithms for Electrical Wiring Interconnect Systems (EWIS) Fault Detection

Dr. Eric Bechhoefer: Goodrich Aerospace

Ryan Hanks: NAVAIR 4.4.4.3

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, includion of information. Send comments is arters Services, Directorate for Information of law, no person services.	egarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 03 FEB 2005		2. REPORT TYPE N/A		3. DATES COVE	RED	
US FED 2005		IV/A		-		
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER	
Aging Aircraft 2005, The 8th Joint NASA/FAA/DOD Conference on Aging Aircraft, Decision algorithms for Electrical Wiring Interconnect					5b. GRANT NUMBER	
Systems (EWIS)Fault Detection			5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
NASA Langley Res 23681 and NAVAL	R, Aging Aircraft P	Taylor St., M/S 190 rogram Bldg., 2185, nt River, MD 20670	Ste 2100 C4,	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	mages.				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	15	RESI ONSIBLE I ERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Aging Fleet of Aircraft

Aging Fleet of Aircraft

- Wire Becoming an Increasing Problem resulting in:
 - Malfunctioning Avionics Equipment
 - Electrical Fires
 - Mission Aborts
- Few Tools Available to the Maintainer for Troubleshooting
- If Failure: Replace LRU
 - Wire Only Considered After the Fact
- Better Tools May Allow Development of Periodic Wire Maintenance Procedure
 - On Condition Maintenance?
- Development of Hand Held TDR
 - Signal Processing and Decision Algorithms to Facilitate Wire Diagnostic

Failure Modes For Aircraft 1997-2001

(Source: Navy Safety Center Hazardous Incident Data)

Hardware Considerations

Time Domain Reflectometry

- Fast Risetime: High Bandwidth
 - Should Allow Detection of Smaller Changes in Wire Characteristic Impedance
 - Characteristic Impedance Could be used for Identification of Different EWIS Events

PCMCIA Format TDR Card

- 148 Ps Risetime
- Sequential Sampling Allows for 5 GSPS (200 ps sample rate)
- ADC Analog Bandwidth of 1 GHz

Initial Results of GWIT are Promising

- Opens, Shorts
- Soft Faults: Chafe/Splice, Connectors on Coax, Twisted Shielded Pair,
 Triple Twisted Shielded

Analysis Issues: Inverse Scattering

- A Change In Characteristic Impedance Causes a Change in the Reflected Voltage
 - $V_{Refected} = [(Z_2 Z_1) V_{Incident}]/(Z_2 + Z_1)$
- Complicates Matters When There Is More Than One Change in Impedance
 - Interferes With Fault Detection and Classification
 - Would Like To Remove Effects

Scattering Effect Adversely Distorts Measurement

Simplifying Assumptions: Raw V measured vs Processed V measured Goupillaud medium 0.55 **Step Function** No Frequency Attenuation 0.45 RawV Restored Energy 0.35 0.3 Raw V meas 0.25 Fixed Interactions 100 120 140 160 180

Frequency Attenuation

- Step Function Gets "Stretched" in Time
 - Attenuation of High Frequency Components
 - Caused By:
 - Skin Effect
 - Capacitance
 - Resistance
 - For Longer Transmission Lines
 - Attenuation Predominately a Function of Resistance and Capacitance
 - Modeled Attenuation as RC Circuit
 - Resistance of Wire Segment, R = dLength2/(2r2K),
 - Capacitance as Function of Z: C = 1./(c*vop*z),

Length Varying Inverse Filter

Calculate Transfer Function For Each Wire Segment

- $H_i = F(1/RC * e^{-t/RC})$
- $b_i = F^{-1}(1/H_i)$ are the Filter Coefficients of a Convolution Matrix

$$dZ_{norm}/dt = \begin{bmatrix} b_1 & 0 & & & & 0 \\ 0 & b_2 & & & & \\ & & & & & \\ & & & & b_{n-1} & \\ 0 & & & 0 & b_n \end{bmatrix} \bullet dZ_{Meas}/dt$$

Example Attenuation Effects for Various Lengths

Statistical Event Detection

- With Good Representation of the Characteristic Impedance
 - Decision Algorithm for Detection and Classification.
 - Detection: Identifying Some Anomalous Event on the EWIS
 - Classification Concerned with Naming an Event to a Specific Type.
- A Number of Decision Methodologies
 - Artificial Neural Networks,
 - Fuzzy Logic,
 - Baysian Belief Networks
- We Selected a Purely Statistical Approach: Hypothesis Testing
 - A Formal Procedure:
 - Observe the Impedance
 - Formulates a Theory
 - Tests this Theory against the Observation

Hypothesis Test

- The Model: Impedance is a Function of inductance and Capacitance:
 - An Event of the Wire, Due to Chafe, ETC, Changes the Local EWIS Inductance or Capacitance.
 - This Changes the Local Impedance:
 - Formally, the test is:
 - $H_0: Z = Z_i$
 - H_a : $Z \sim = Z_i$
 - The Test Statistic is Then $\theta = \hat{Z} Z_0 / \sigma_{\hat{Z}}$
- Mean and Variance was Estimated from Prior 31 Z_i Values
- Type I Error was Set at 10⁻⁵
 - Say Event When No Event i.e. False Alarm

Detection Example

Twisted Shielded Pair: Connector->20 ft->Connector->10ft->Connector->Open

Event Classification

Once an Event is Detected:

- Multiple Hypothesis Test to Determine the Most Likely Event Type
- The decision rule will be to choose H0 if:
 - $P(H0|\theta) > P(H1|\theta)$, $P(H2|\theta)$,... $P(Hm|\theta)$.
- For the Binary Case, the Rule becomes:

$$\frac{P(H_1 \mid \theta)}{P(H_0 \mid \theta)} \stackrel{\stackrel{?}{\rightarrow}}{\underset{=}{\stackrel{>}{\rightarrow}}} 1$$

Using Bayes' Rules, the Criterion is:

$$P(H_{i} \mid \theta) = \frac{p(\theta \mid H_{i})P(H_{i})}{p(\theta)}, \quad i = 0.1$$

Rearranging and Taking the Log:

$$\ln \ln \log \frac{H_1}{H_0} \ln \frac{P(H_0)}{P(H_1)}$$

Assuming Normal Distribution...

Gaussian Case Decision Rule

- Decision Space: Parametric Observation $\theta = (Zi, Zi+1...Zi+m)$
- Calculate the Square of the Normalized Distance of the Decision Space

$$d^{2} = (\boldsymbol{\theta} - \mathbf{m})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\theta} - \mathbf{m})$$

– The Log Likelihood Ratio Test is then:

$$\frac{1}{2} \left[d_0^2 - d_1^2 \right] + \frac{1}{2} \ln \left(\frac{|\Sigma_0|}{|\Sigma_1|} \right) \frac{H_1}{H_0} \ln \frac{P_0}{P_1}$$

- Assumed Equally Likely Events (P_i are Equal)
- For Test, Plug in the Event Mean Values and Covariance
 - For Three or More Events: Pick the Biggest, Else Accept Null Hypothesis

Example: Twisted Shielded Pair

Configuration Data

- By Wire Type:
 - TTS, TSP, TP, Single, Coax
- VOP, Mean and Covariance of Various Events
 - Calculated From Test Harness
 - Connector, Chafe, Splice
- Single Wire is Tough
 - Event Detection Can't Say Much About Classification

Hypothesis Test Results:

Event Type	Event @ 19.2 ft	Event @ 24.6 ft	Event @ 29.2 ft
Φ ₁ (Connector)	6196	-4665	7223
Φ ₂ (Chafe)	1394	208	2277

Discussion

Promising Results

- Detection of Chafes/Splices and Connectors on Many Wire Types
- Single Wire: Opens, Short and "Events"

Good Framework for Additional Studies

- Improve Performance By:
 - Model Connectors
 - Take Into Account Frequency Attenuation in Inverse Scattering
 - Other Decision Algorithms
 - Detection Strategies
 - Look At Relationship Between Wires in Harness